Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 34(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38271624

RESUMO

The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides. In this study, the first GH17 glucanosyltransglycosylase, MlGH17B, from a marine bacterium (Muricauda lutaonensis), was characterized. The enzyme was moderately thermostable with Tm at 64.4 °C and 73.2 °C, but an activity optimum at 20 °C, indicating temperature sensitive active site interactions. MlGH17B uses ß-1,3 laminari-oligosaccharides with a degree of polymerization (DP) of 4 or higher as donors. Two glucose moieties (bound in the aglycone +1 and +2 subsites) are cleaved off from the reducing end of the donor while the remaining part (bound in the glycone subsites) is transferred to an incoming ß-1,3 glucan acceptor, making a ß-1,6-linkage, thereby synthesizing branched or kinked oligosaccharides. Synthesized oligosaccharides up to DP26 were detected by mass spectrometry analysis, showing that repeated transfer reactions occurred, resulting in several ß-1,6-linked branches. The modeled structure revealed an active site comprising five subsites: three glycone (-3, -2 and -1) and two aglycone (+1 and +2) subsites, with significant conservation of substrate interactions compared to the only crystallized 1,3-ß-glucanosyltransferase from GH17 (RmBgt17A from the compost thriving fungus Rhizomucor miehei), suggesting a common catalytic mechanism, despite different phylogenetic origin, growth environment, and natural substrate. Both enzymes lacked the subdomain extending the aglycone subsites, found in GH17 endo-ß-glucanases from plants, but this extension was also missing in bacterial endoglucanases (modeled here), showing that this feature does not distinguish transglycosylation from hydrolysis, but may rather relate to phylogeny.


Assuntos
Flavobacteriaceae , Oligossacarídeos , Filogenia , Oligossacarídeos/química , Polissacarídeos , Especificidade por Substrato
2.
Cell ; 186(19): 4059-4073.e27, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37611581

RESUMO

Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.


Assuntos
Antibacterianos , Bactérias , Microbiologia do Solo , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bioensaio , Difosfatos
3.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292624

RESUMO

Antimicrobial resistance is a leading mortality factor worldwide. Here we report the discovery of clovibactin, a new antibiotic, isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant bacterial pathogens without detectable resistance. Using biochemical assays, solid-state NMR, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C 55 PP, Lipid II, Lipid WTA ). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate, but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the irreversible sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. Uncultured bacteria offer a rich reservoir of antibiotics with new mechanisms of action that could replenish the antimicrobial discovery pipeline.

4.
Chemistry ; 28(70): e202202472, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36098094

RESUMO

Specific interactions with phospholipids are often critical for the function of proteins or drugs, but studying these interactions at high resolution remains difficult, especially in complex membranes that mimic biological conditions. In principle, molecular interactions with phospholipids could be directly probed by solid-state NMR (ssNMR). However, due to the challenge to detect specific lipids in mixed liposomes and limited spectral sensitivity, ssNMR studies of specific lipids in complex membranes are scarce. Here, by using purified biological 13 C,15 N-labeled phospholipids, we show that we can selectively detect traces of specific lipids in complex membranes. In combination with 1 H-detected ssNMR, we show that our approach provides unprecedented high-resolution insights into the mechanisms of drugs that target specific lipids. This broadly applicable approach opens new opportunities for the molecular characterization of specific lipid interactions with proteins or drugs in complex fluid membranes.


Assuntos
Lipossomos , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopia de Ressonância Magnética , Lipossomos/química , Fosfolipídeos , Bicamadas Lipídicas/química
5.
Nature ; 608(7922): 390-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922513

RESUMO

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Assuntos
Antibacterianos , Bactérias , Membrana Celular , Depsipeptídeos , Viabilidade Microbiana , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Difosfatos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Lipídeos/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Pirrolidinas/química , Açúcares/química
6.
Acta Biomater ; 146: 131-144, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35470073

RESUMO

An infecting and propagating parasite relies on its innate defense system to evade the host's immune response and to survive challenges from commensal bacteria. More so for the nematode Anisakis, a marine parasite that during its life cycle encounters both vertebrate and invertebrate hosts and their highly diverse microbiotas. Although much is still unknown about how the nematode mitigates the effects of these microbiota, its antimicrobial peptides likely play an important role in its survival. We identified anisaxins, the first cecropin-like helical antimicrobial peptides originating from a marine parasite, by mining available genomic and transcriptomic data for Anisakis spp. These peptides are potent bactericidal agents in vitro, selectively active against Gram-negative bacteria, including multi-drug resistant strains, at sub-micromolar concentrations. Their interaction with bacterial membranes was confirmed by solid state NMR (ssNMR) and is highly dependent on the peptide concentration as well as peptide to lipid ratio, as evidenced by molecular dynamics (MD) simulations. MD results indicated that an initial step in the membranolytic mode of action involves membrane bulging and lipid extraction; a novel mechanism which may underline the peptides' potency. Subsequent steps include membrane permeabilization leading to leakage of molecules and eventually cell death, but without visible macroscopic damage, as shown by atomic force microscopy and flow cytometry. This membranolytic antibacterial activity does not translate to cytotoxicity towards human peripheral blood mononuclear cells (HPBMCs), which was minimal at well above bactericidal concentrations, making anisaxins promising candidates for further drug development. STATEMENT OF SIGNIFICANCE: Witnessing the rapid spread of antibiotic resistance resulting in millions of infected and dozens of thousands dying worldwide every year, we identified anisaxins, antimicrobial peptides (AMPs) from marine parasites, Anisakis spp., with potent bactericidal activity and selectivity towards multi-drug resistant Gram-negative bacteria. Anisaxins are membrane-active peptides, whose activity, very sensitive to local peptide concentrations, involves membrane bulging and lipid extraction, leading to membrane permeabilization and bacterial cell death. At the same time, their toxicity towards host cells is negligible, which is often not the case for membrane-active AMPs, therefore making them suitable drug candidates. Membrane bulging and lipid extraction are novel concepts that broaden our understanding of peptide interactions with bacterial functional structures, essential for future design of such biomaterials.


Assuntos
Parasitos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Bactérias , Humanos , Leucócitos Mononucleares , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana
7.
Chemistry ; 28(9): e202103910, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35045197

RESUMO

This work investigates the addition of monosaccharides to marketed drugs to improve their pharmacokinetic properties for oral absorption. To this end, a set of chloromethyl glycoside synthons were developed to prepare a variety of glycosyloxymethyl-prodrugs derived from 5-fluorouracil, thioguanine, propofol and losartan. Drug release was studied in vitro using ß-glucosidase confirming rapid conversion of the monosaccharide prodrugs to release the parent drug, formaldehyde and the monosaccharide. To showcase this prodrug approach, a glucosyloxymethyl conjugate of the tetrazole-containing drug losartan was used for in vivo experiments and showed complete release of the drug in a dog-model.


Assuntos
Pró-Fármacos , Animais , Cães , Glicosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...